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1. Find all functions f : R ! R such that

f(2xy) + f(f(x+ y)) = xf(y) + yf(x) + f(x+ y)

for all real numbers x and y.

Solution: The only functions are f(x) = 0, f(x) = x and f(x) = 2 � x. It
can be checked that these are indeed solutions.

Substituting x and
1

2
for x and y respectively yields

f(x) + f

✓
f

✓
x+

1

2

◆◆
= xf

✓
1

2

◆
+

1

2
f(x) + f

✓
x+

1

2

◆

On the other hand, substituting x+ 1
2 and 0 for x and y respectively yields

f(0) + f

✓
f

✓
x+

1

2

◆◆
=

✓
x+

1

2

◆
f(0) + f

✓
x+

1

2

◆

Subtracting the two equations then yields

f(x)� f(0) = 2xf

✓
1

2

◆
� 2xf(0) =) f(x) = 2x


f

✓
1

2

◆
� f(0)

�
+ f(0),

which implies that f(x) is linear. Substituting f(x) = ax + b to the given
functional equation then gives the three answers. ⌅

2. Twelve students participated in a theater festival consisting of n di↵erent
performances. Suppose there were six students in each performance, and
each pair of performances had at most two students in common. Determine
the largest possible value of n.

Solution: We label the students by 1, 2, . . . , 12 and the performances by the
subsets P1, . . . , Pn of {1, . . . , 12}. Then the problem now reduces to finding
the maximum value of n such that
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(a) |Pi| = 6 for all 1  i  n, and

(b) |Pi \ Pj|  2 for all 1  i < j  n.

We make a 12⇥ n {0, 1}-matrix M whose entries are defined as follows:

Mij =

(
1 if student i plays in performance Pj,

0 if student i does not play in performance Pj.

For each i 2 {1, . . . , 12}, let ri =
Pn

j=1Mij be the number of times i appears

in the sets P1, . . . , Pn. Then, by double-counting, we have
P12

i=1 ri = 6n.
Let R be the set of all unordered pairs of 1’s that lie in the same row.
Counting by rows, we see that in the ith row, there are ri 1’s and thus�ri
2

�
pairs. Thus, |R| =

P12
i=1

�ri
2

�
. Counting by columns, we note that for

any two columns, there are at most 2 pairs of 1’s among these columns, so
|R|  2

�n
2

�
= n(n� 1). Thus,

12X

i=1

✓
ri

2

◆
 n(n�1) =)

12X

i=1

r
2
i �

12X

i=1

ri  2n(n�1) =)
12X

i=1

r
2
i  2n2+4n.

By the Cauchy-Schwarz inequality,

36n2 =

 
12X

i=1

ri

!2

 12
12X

i=1

r
2
i = 24n2 + 48n,

which implies that n  4. For n = 4, we have the following specific sets
P1, . . . , P4 satisfying the conditions of the problem:

P1 = {1, 2, 3, 4, 5, 6}, P2 = {1, 3, 7, 8, 11, 12}
P3 = {2, 4, 7, 8, 9, 10}, P4 = {5, 6, 9, 10, 11, 12}.

Hence, the maximum value of n is n = 4. ⌅

3. Find all triples (a, b, c) of positive integers such that

a
2 + b

2 = n lcm(a, b) + n
2

b
2 + c

2 = n lcm(b, c) + n
2

c
2 + a

2 = n lcm(c, a) + n
2

for some positive integer n.

Solution: We claim that the only triples that satisfy the system are those of
the form (k, k, k). It can be easily checked that all such triples are solutions,
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where n = k. Conversely, suppose that (a, b, c) is a solution. We then need
to show that a = b = c.

Suppose that there exists some integer d > 1 such that d|a, d|b, d|c. From
any of the equations of the system, we also get d|n. Thus, by replacing
(a, b, c) with (ad ,

b
d ,

c
d), we obtain a new solution, where n is replaced by n

d .

Thus, WLOG, we can assume that a, b, c, and n share no common divisor
other than 1. By solving the system of equations for 2a2, we get

2a2 = n(lcm(a, b)� lcm(b, c) + lcm(c, a) + n).

Hence n|2a2, and similarly, n|2b2, and n|2c2. But as a, b, c and n share no
common divisor other than 1, it then follows that either n = 1 or n = 2.

If n = 1, then we have a2+b
2 = lcm(a, b)+1, which implies that 2ab  ab+1.

This gives a = b = c = 1, which leads to the family of solutions (k, k, k).

If n = 2, then a
2 + b

2 = 2lcm(a, b) + 4  2ab + 4 so (a � b)2  4, and
|a � b|  2. Similarly, |b � c|  2 and |c � a|  2. Note that no two of a,
b, and c can be consecutive. To see this, suppose WLOG that a = b + 1.
Substituting this to the first equation gives 1 = 4. Contradiction.

Thus, at least two of a, b, and c must be equal. Without loss of generality,
assume that a = b. Substituting to the first equation, we obtain a = b = 2.
Thus, 4 + c

2 = 2lcm(2, c) + 4, and so c is even. This is a contradiction
since we assumed that a, b, c, and n have no common divisor other than 1.
Therefore, the case n = 2 does not give any additional solution. ⌅

4. In acute triangle ABC with \BAC > \BCA, let P be the point on side BC

such that \PAB = \BCA. The circumcircle of triangle APB meets side
AC again at Q. Point D lies on segment AP such that \QDC = \CAP .
Point E lies on line BD such that CE = CD. The circumcircle of triangle
CQE meets segment CD again at F , and line QF meets side BC at G.
Show that B,D, F, and G are concyclic.

Solution: Refer to the figure shown below. Since ABPQ is cyclic, we have
CP ·CB = CQ ·AC. Also, we have 4CAD ⇠ 4CDQ, so CD

2 = CQ ·AC.
This means that CE

2 = CD
2 = CQ ·AC = CP ·CB, so 4CDP ⇠ 4CBD

and4CEQ ⇠ 4CAE. Thus, \CBD = \CDP and, since QECF is cyclic,
\CAE = \CEQ = \QFD. Now, we see that

\EDC = \CBD + \DCB = \CBD + \ACB � \ACD

= \CBD + \ACB � (\CDP � \DAC)

= \BAP + \DAC = \BAC.
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Since triangleDCE is isosceles with CD = CE, we get \DEC = \BAC. It
follows that BAEC is cyclic, so \GBD = \CBD = \CAE. But \CAE =
\QFD, so \GBD = \QFD and therefore, BDFG is cyclic. The desired
conclusion follows. ⌅
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