
20th Philippine Mathematical Olympiad

Mathematical Society of the Philippines

Department of Science and Technology - Science Education Institute

PMO Director: Ma. Nerissa Abara
Test Development Committee: Christian Paul Chan Shio, Richard Eden, Louie John Vallejo

Carlo Francisco Adajar, David Martin Cuajunco, Russelle Guadalupe, Job Nable,
Lu Christian Ong, Lu Kevin Ong, Timothy Robin Teng



20th Philippine Mathematical Olympiad

National Stage, Written Phase

20 January 2018

Time: 4.5 hours Each item is worth 7 points.

1. In triangle ABC with ∠ABC = 60◦ and 5AB = 4BC, points D and E are
the feet of the altitudes from B and C, respectively. M is the midpoint
of BD and the circumcircle of triangle BMC meets line AC again at N .
Lines BN and CM meet at P . Prove that ∠EDP = 90◦.

Solution: From the given, AB = 4l and BC = 5l for some constant l > 0.

Since ∠ABC = 60◦, BE = 5l
2 and

CE = 5
√

3l
2 . Also, by the cosine law,

AC =
√

21l. Since BEDC is cyclic,
∠EDA = ∠ABC = 60◦. Conse-
quently, ∠EDB = 30◦ and 4AED ∼
4ACB. From the latter, AD = 4k,
DE = 5k, and AE =

√
21k for some

constant k > 0. Since 4l = AB =
BE +AE = 5l

2 +
√

21k, then l
k = 2

√
21

3 .

The area of 4ABC equals

1

2
sin 60◦ · 4l · 5l =

1

2
·
√

21l · 2BM

which gives BM = 5l√
7
. Observe that

CE

DE
=

5
√

3l/2

5k
=

√
3l

2k
=

√
3

2
· 2
√

21

3
=
√

7 =
5l

5l/
√

7
=
CB

MB
.

This, along with ∠MBC = ∠DBC = ∠DEC, implies that 4DEC ∼
4MBC, so ∠ECD = ∠BCM and thus, ∠MCD = ∠BCE = 30◦. As
BMNC is cyclic, ∠MBN = 30◦ so that lines ED and BN are parallel.
We have ∠DMC = 60◦ so that ∠BPM = 30◦. Thus, 4BMP is isosceles
with BM = MP and it follows that M is the circumcenter of 4BPD.
Therefore, ∠BPD = 90◦. It follows that ∠EDP = 90◦. 2
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2. Suppose a1, a2, . . . is a sequence of integers, and d is some integer. For all
natural numbers n,

(i) |an| is prime; (ii) an+2 = an+1 + an + d.

Show that the sequence is constant.

Solution: Consider the sequence {bn} defined by bn = an + d for all n, so
that bn+2 = bn+1 + bn for all n. This sequence is determined by its first
two terms b1 and b2, and the same holds true if we reduce the sequence
mod a1. Taking remainders mod a1, pairs of consecutive terms will repeat
themselves, and so the sequence {bn} is periodic mod a1, i.e., there exists
a positive integer ` for which bk+` ≡ b` (mod a1) for all k, and so a`+1 ≡ a1

(mod a1). Thus, a1 | a`+1. From (i), we must have |a1| = |a`+1|, and in
fact, |a1| = |ak`+1| for all k. In particular, ak`+1, and thus bk`+1, assumes
at most two distinct values.

It suffices to show that {bn} is constant. Consider the characteristic poly-
nomial of the recurrence defining {bn}, P (x) = x2 − x − 1. Let ϕ and ψ

be the distinct roots of P , with ϕ > ψ. Note that in fact ϕ > 1 while
0 > ψ > −1. There exists a unique pair of constants c1, c2, dependent on
the values of b1 and b2, satisfying the system

b1 = c1 + c2

b2 = c1ϕ+ c2ψ.

It can be proved easily by induction that bn = c1ϕ
n−1 + c2ψ

n−1 for all
n ≥ 1. From this, we get that |bn| ≥ |c1|ϕn−1 − |c2|. If c1 6= 0, then |bn|
eventually grows without bound, which contradicts our previous assertion
that |bk`+1| assumes at most two values. Thus, c1 = 0, and consequently,
bn+1 = ψbn. However, bn+1 and bn are integers while ψ is irrational. This
forces us to conclude that bn+1 = bn = 0, and so c2 = 0 as well. Thus,
bn = 0 for all n, and an = a1 (with d = −a1). 2

3. Let n be a positive integer. An n × n matrix (a rectangular array of
numbers with n rows and n columns) is said to be a platinum1 matrix if

(i) the n2 entries are integers from 1 to n;

(ii) each row, each column, and the main diagonal (from the upper left
corner to the lower right corner) contains each integer from 1 to n
exactly once; and

1Platinum is the modern gift for the 20th wedding anniversary.
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(iii) there exists a collection of n entries containing each of the numbers
from 1 to n, such that no two entries lie on the same row or column,
and none of which lie on the main diagonal of the matrix.

Determine all values of n for which there exists an n×n platinum matrix.

This is based on the paper A Simple Method for Constructing Doubly Diagonalized Latin

Squares by Ervin Gergely, Journal of Combinatorial Theory (A) 16, 266-272 (1974).

Solution: There is no platinum matrix for n = 1 and for n = 2. We claim
that a platinum matrix exists for all integers n ≥ 3.

Define a transversal as a collection of n matrix entries which are taken
from distinct rows and columns, and which contains each of the numbers
1 to n.

When n ≥ 3 is odd, we can construct an n × n platinum matrix in the
following manner: First, fill up the first row with 1, n, n− 1, . . . , 3, 2 from
left to right. Then fill up each “diagonal” (which goes up to down, left to
right and wraps back to the 1st column after the nth column) by starting
with its first row entry and incrementing by 1 as we go down to the last
row. From this point onwards, entries are reduced mod n, but with n

written instead of 0. For example, for n = 3, we have the following
platinum matrix.1 3 2

3 2 1
2 1 3

 =

1
2

3

+

 3
1

2

+

 2
3

1


From the construction described, the entry in row i, column j (1 ≤ i, j ≤
n) is aij = 2i − j (again, reduced mod n as mentioned above). For a
fixed row i, the entries for different columns j and j′ are distinct. For a
fixed column j, the entries for different rows i and i′ are distinct since n
is odd. The diagonal whose first row entry is 2 is a transversal; in fact,
each diagonal is a transversal. Thus, the matrix is platinum.

Let n ≥ 8 be even, so n − 3 ≥ 5 is odd. Consider the (n − 3) × (n − 3)
platinum matrix, denoted by Cn−3, following the construction above. We
start constructing our n× n platinum matrix as follows:(

Cn−3

C3

)
where C3 =

n− 2 n n− 1
n n− 1 n− 2

n− 1 n− 2 n

 .

We then need to fill in the 3× (n− 3) matrix and the (n− 3)× 3 matrix
adjacent to Cn−3. To do this, from the (n−3)−1 = n−4 ≥ 4 diagonals of
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Cn−3 other than its main diagonal, choose 3. For one of these transversals,
project its entries vertically into an empty row and horizontally into an
empty column, then replace all of the entries of this chosen transversal by
n−2. Then repeat this procedure using the symbols n−1 and n using the
two other transversals. The resulting matrix is then a platinum matrix.
Of the n − 4 ≥ 4 transversals described above for Cn−3, at least one has
not been used yet. This, along with a “transversal” of C3 other than its
main diagonal, then form a transversal of the formed n× n matrix; none
of the entries of this transversal are in the main diagonal. The matrix
formed is thus platinum.

The following illustrates the construction for the case n = 8. The final
matrix is platinum, with the boxed entries all off-diagonal and forming a
transversal.

1 5 4 3 2
3 2 1 5 4
5 4 3 2 1
2 1 5 4 3
4 3 2 1 5

6 8 7
8 7 6
7 6 8


−→



1 6© 4 3 2 5
3 2 6© 5 4 1
5 4 3 6© 1 2
2 1 5 4 6© 3
6© 3 2 1 5 4

4 5 1 2 3 6 8 7
8 7 6
7 6 8


−→



1 6 7© 3 2 5 4
3 2 6 7© 4 1 5
5 4 3 6 7© 2 1
7© 1 5 4 6 3 2
6 7© 2 1 5 4 3

4 5 1 2 3 6 8 7
2 3 4 5 1 8 7 6

7 6 8


−→



1 6 7 8© 2 5 4 3

3 2 6 7 8© 1 5 4
8© 4 3 6 7 2 1 5

7 8© 5 4 6 3 2 1

6 7 8© 1 5 4 3 2

4 5 1 2 3 6 8 7

2 3 4 5 1 8 7 6

5 1 2 3 4 7 6 8


Lastly, consider the following matrices.


1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3




1 2 3 4 5 6
5 3 6 1 4 2
4 1 5 2 6 3
2 4 1 6 3 5
6 5 4 3 2 1
3 6 2 5 1 4


It is straightforward to verify that these are platinum matrices for n = 4
and n = 6. 2
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4. Determine all ordered pairs (x, y) of nonnegative integers that satisfy the
equation

3x2 + 2 · 9y = x(4y+1 − 1).

This is a modified version of Problem N2 from the 2010 IMO shortlist.

Solution: The equation is equivalent to

(3x)2 + 2 · 32y+1 = 3x
[
2(2y+1)+1 − 1

]
.

Letting a = 3x and b = 2y + 1, we have

a2 + 2 · 3b = a(2b+1 − 1). (1)

Case 1: b = 1
We have a2− 3a+ 6 = 0 which has no integer solution for a. Thus, there
is no solution in this case.

Case 2: b = 3
We have a2 − 15a+ 54 = 0, whose roots are 6 and 9, both divisible by 3.
This case then has the solutions (2, 1) and (3, 1) for the original equation.

Case 3: b = 5
We have a2 − 63a+ 486 = 0, whose roots are 9 and 54, both divisible by
3. We get as additional solutions (3, 2) and (18, 2).

Case 4: b ≥ 7, b odd
It follows from (1) that a|2 · 3b. Since a is divisible by 3, either a = 3p for
some 1 ≤ p ≤ b or a = 2 · 3q for some 1 ≤ q ≤ b.

For the first case a = 3p, let q = b− p. Then we have

2b+1 − 1 = a+
2 · 3b

a
= 3p + 2 · 3q.

For the second case a = 2 · 3q, let p = b− q. Then we have

2b+1 − 1 = a+
2 · 3b

a
= 2 · 3q + 3p.

In either case,
2b+1 − 1 = 3p + 2 · 3q (2)

where p+ q = b. Consequently, 2b+1 > 3p and 2b+1 > 2 · 3q. Thus,

3p < 2b+1 = 8
b+1
3 < 9

b+1
3 = 3

2(b+1)
3

2 · 3q < 2b+1 = 2 · 8
b
3 < 2 · 9

b
3 = 2 · 3

2b
3 < 2 · 3

2(b+1)
3
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Thus, p, q < 2(b+1)
3 . Since p = b−q and q = b−p, we get p, q > b− 2(b+1)

3 =
b−2

3 . Therefore,
b− 2

3
< p, q <

2(b+ 1)

3
.

Let r = min{p, q}. Since r > b−2
3 ≥

5
3 , then r ≥ 2. Consequently, the

right hand side of (2) is divisible by 9. Thus, 9 divides 2b+1 − 1. This is
true only if 6|b+ 1. Since b ≥ 7, then b ≥ 11. Thus, we can let b+ 1 = 6s
for some positive integer s, and we can write

2b+1 − 1 = 26s − 1 = 43s − 1 = (2s − 1)(2s + 1)(42s + 4s + 1).

Since 4s ≡ 1 mod 3, then 42s+4s+1 = (4s−1)2 +3 ·4s is always divisible
by 3 but never by 9. Furthermore, at most one of 2s − 1 and 2s + 1 is
divisible by 3, being consecutive odd numbers. Since 3r|2b+1 − 1, then
either 3r−1|2s − 1 or 3r−1|2s + 1. From both cases, we have 3r−1 ≤ 2s + 1.
Thus,

3r−1 ≤ 2s + 1 ≤ 3s = 3
b+1
6 .

Therefore,
b− 2

3
− 1 < r − 1 ≤ b+ 1

6
which implies b < 11. However, there is no odd integer b between 7
(included) and 11 (excluded) such that 6|b+1. There are then no solutions
for this last case.

Therefore, the solutions (x, y) of the given equation are (2, 1), (3, 1), (3, 2),
and (18, 2). 2
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