

A project of the Mathematical Society of the Philippines (MSP) and the Department of Science and Technology - Science Education Institute (DOST-SEI) in partnership with HARI Foundation and Manulife Business Processing Services

PART I. Choose the best answer. Each correct answer is worth two points.

- 1. Find x if $\frac{79}{125} \left(\frac{79 + x}{125 + x} \right) = 1.$ (a) 0 (b) -46 (c) -200 (d) -204
- 2. The line 2x + ay = 5 passes through (-2, -1) and (1, b). What is the value of b?

(a)
$$-\frac{1}{2}$$
 (b) $-\frac{1}{3}$ (c) $-\frac{1}{4}$ (d) $-\frac{1}{6}$

3. Let ABCD be a parallelogram. Two squares are constructed from its adjacent sides, as shown in the figure below. If $\angle BAD = 56^{\circ}$, find $\angle ABE + \angle ADH + \angle FCG$, the sum of the three highlighted angles.

(a) 348° (b) 384° (c) 416° (d) 432°

4. For how many integers x from 1 to 60, inclusive, is the fraction $\frac{x}{60}$ already in lowest terms?

- (a) 15 (b) 16 (c) 17 (d) 18
- 5. Let r and s be the roots of the polynomial $3x^2 4x + 2$. Which of the following is a polynomial with roots $\frac{r}{s}$ and $\frac{s}{r}$?
 - (a) $3x^2 + 2x + 3$ (b) $3x^2 + 2x 3$ (c) $3x^2 2x + 3$ (d) $3x^2 2x 3$

6. If the difference between two numbers is a and the difference between their squares is b, where a, b > 0, what is the sum of their squares?

(a)
$$\frac{a^2 + b^2}{a}$$
 (b) $2\left(\frac{a+b}{a}\right)^2$ (c) $\left(a+\frac{b}{a}\right)^2$ (d) $\frac{a^4 + b^2}{2a^2}$

7. Evaluate the sum

(a) 0 (b)
$$\frac{1}{2}$$
 (c) $-\frac{1}{2}$ (d) 1

- 8. In $\triangle ABC$, D is the midpoint of BC. If the sides AB, BC, and CA have lengths 4, 8, and 6, respectively, then what is the numerical value of AD^2 ?
 - (a) 8 (b) 10 (c) 12 (d) 13
- 9. Let A be a positive integer whose leftmost digit is 5 and let B be the number formed by reversing the digits of A. If A is divisible by 11, 15, 21, and 45, then B is not always divisible by $A = \frac{1}{2} \frac{1}{2}$
 - (a) 11 (b) 15 (c) 21 (d) 45
- 10. In $\triangle ABC$, the segments AD and AE trisect $\angle BAC$. Moreover, it is also known that AB = 6, AD = 3, AE = 2.7, AC = 3.8 and DE = 1.8. The length of BC is closest to which of the following?

- (a) 8 (b) 8.2 (c) 8.4 (d) 8.6
- 11. Let $\{a_n\}$ be a sequence of real numbers defined by the recursion $a_{n+2} = a_{n+1} a_n$ for all positive integers n. If $a_{2013} = 2015$, find the value of $a_{2017} a_{2019} + a_{2021}$.
 - (a) 2015 (b) -2015 (c) 4030 (d) -4030
- 12. A *lattice point* is a point whose coordinates are integers. How many lattice points are strictly inside the triangle formed by the points (0,0), (0,7), and (8,0)?
 - (a) 21 (b) 22 (c) 24 (d) 28

13. Find the sum of the solutions to the logarithmic equation

$$x^{\log x} = 10^{2-3\log x + 2(\log x)^2}.$$

where $\log x$ is the logarithm of x to the base 10.

- (a) 10 (b) 100 (c) 110 (d) 111
- 14. Triangle ABC has AB = 10 and AC = 14. A point P is randomly chosen in the interior or on the boundary of triangle ABC. What is probability that P is closer to AB than to AC?
 - (a) 1/4 (b) 1/3 (c) 5/7 (d) 5/12
- 15. Suppose that $\{a_n\}$ is a nonconstant arithmetic sequence such that $a_1 = 1$ and the terms a_3, a_{15}, a_{24} form a geometric sequence in that order. Find the smallest index n for which $a_n < 0$.
 - (a) 50 (b) 51 (c) 52 (d) 53

PART II. Choose the best answer. Each correct answer is worth three points.

- 1. Two red balls, two blue balls, and two green balls are lined up into a single row. How many ways can you arrange these balls such that no two adjacent balls are of the same color?
 - (a) 15 (b) 30 (c) 60 (d) 90
- 2. What is the sum of the last two digits of $403^{(10^{10}+6)}$?
 - (a) 9 (b) 10 (c) 11 (d) 12
- 3. How many strictly increasing finite sequences (having one or more terms) of positive integers less than or equal to 2017 with an odd number of terms are there?
 - (a) 2^{2016} (b) $\frac{4034!}{(2017!)^2}$ (c) $2^{2017} 2017^2$ (d) $2^{2018} 1$
- 4. If one of the legs of a right triangle has length 17 and the lengths of the other two sides are integers, then what is the radius of the circle inscribed in that triangle?
 - (a) 8 (b) 14 (c) 11 (d) 10
- 5. Let N be the smallest three-digit positive number with exactly 8 positive even divisors. What is the sum of the digits of N?
 - (a) 4 (b) 9 (c) 12 (d) 13

6. Let a, b, c be randomly chosen (in order, and with replacement) from the set $\{1, 2, 3, \ldots, 999\}$. If each choice is equally likely, what is the probability that $a^2 + bc$ is divisible by 3?

(a)
$$\frac{1}{3}$$
 (b) $\frac{2}{3}$ (c) $\frac{7}{27}$ (d) $\frac{8}{27}$

7. Folding a rectangular sheet of paper with length ℓ and width w in half along one of its diagonals, as shown in the figure below, reduces its "visible" area (the area of the pentagon below) by 30%. What is $\frac{\ell}{w}$?

- 8. Find the sum of all positive integers k such that k(k+15) is a perfect square.
 - (a) 63 (b) 65 (c) 67 (d) 69
- 9. Let $f(n) = \frac{n}{3^r}$ where n is an integer, and r is the largest nonnegative integer such that n is divisible by 3^r . Find the number of distinct values of f(n) where $1 \le n \le 2017$.
 - (a) 1344 (b) 1345 (c) 1346 (d) 1347

10. If A, B, and C are the angles of a triangle such that

$$5\sin A + 12\cos B = 15$$

and

$$12\sin B + 5\cos A = 2,$$

then the measure of angle C is

(a)
$$150^{\circ}$$
 (b) 135° (c) 45° (d) 30°

PART III. All answers should be in simplest form. Each correct answer is worth six points.

- 1. How many three-digit numbers are there such that the sum of two of its digits is the largest digit?
- 2. In the figure, a quarter circle, a semicircle and a circle are mutually tangent inside a square of side length 2. Find the radius of the circle.

3. Find the minimum value of

$$\frac{18}{a+b} + \frac{12}{ab} + 8a + 5b,$$

where a and b are positive real numbers.

- 4. Suppose $\frac{\tan x}{\tan y} = \frac{1}{3}$ and $\frac{\sin 2x}{\sin 2y} = \frac{3}{4}$, where $0 < x, y < \frac{\pi}{2}$. What is the value of $\frac{\tan 2x}{\tan 2y}$?
- 5. Find the largest positive real number x such that

$$\frac{2}{x} = \frac{1}{\lfloor x \rfloor} + \frac{1}{\lfloor 2x \rfloor}$$

where |x| denotes the greatest integer less than or equal to x.

Answers

Part I. (2 points each)

1. D	6. D	11. D
2. B	7. B	12. A
3. C	8. B	13. C
4. B	9. C	14. D
5. C	10. A	15. C

Part II. (3 points each)

1. B	6. A
2. C	7. C
3. A	8. C
4. A	9. B
5. B	10. D

Part III. (6 points each)

1. 279 (or $126)^1$ 2. $\frac{2}{9}$ 3. 30 4. $-\frac{3}{11}$ 5. $\frac{20}{7}$

 $^{^{1}}$ We are also accepting the answer 126, as the wording of the problem seems to suggest that the sum of the two digits is equal to the third digit. $\mathbf{6}$