

**PART I.** Give the answer in the simplest form that is reasonable. No solution is needed. Figures are not drawn to scale. Each correct answer is worth three points.

| 1. 14                            | 6. $2 - \sqrt[3]{2}$ | 11. 0, 10 | 16. 1007                                |
|----------------------------------|----------------------|-----------|-----------------------------------------|
| 2. $\sqrt[3]{4}$                 | 7. 144               | 12. 12    | 17. 31                                  |
| 31                               | 8. $6!5! = 86400$    | 13. 6     | 18. $\sqrt{60} = 2\sqrt{15}$            |
| 4. 2                             | 9. $\frac{\pi}{16}$  | 14. 24    | 19. $\frac{3^5}{2^7} = \frac{243}{128}$ |
| 5. $\frac{28}{3} = 9\frac{1}{3}$ | $10.  70^{\circ}$    | 15. 440   | 20. $17^{\circ}$                        |

**PART II.** Show your solution to each problem. Each complete and correct solution is worth ten points.

- 1. Arrange these four numbers from smallest to largest:  $\log_3 2$ ,  $\log_5 3$ ,  $\log_{625} 75$ ,  $\frac{2}{3}$ . Solution: The numbers, arranged from smallest to largest, are  $\log_3 2$ ,  $\frac{2}{3}$ ,  $\log_{625} 75$ , and  $\log_5 3$ .
  - Since  $(3^{\log_3 2})^3 = 8$  and  $(3^{\frac{2}{3}})^3 = 9$ , then  $\log_3 2 < \frac{2}{3}$ .
  - Since  $\left(625^{\frac{2}{3}}\right)^3 = 5^8 = 5^6 \cdot 25$  and  $\left(625^{\log_{625} 75}\right)^3 = 75^3 = 5^6 \cdot 27$ , then  $\frac{2}{3} < \log_{625} 75$ .
  - If  $A = \log_{625} 75$ , then  $5^{4A} = 75$ . On the other hand,  $5^{4 \log_5 3} = 81$ . Thus,  $\log_{625} 75 < \log_5 3$ .
- 2. What is the greatest common factor of all integers of the form  $p^4 1$ , where p is a prime number greater than 5? <u>Solution</u>: Let  $f(p) = p^4 - 1 = (p - 1)(p + 1)(p^2 + 1)$ . Note that  $f(7) = 2^5 \cdot 3 \cdot 5^2$  and  $f(11) = 2^4 \cdot 3 \cdot 5 \cdot 61$ . We now show that their greatest common factor,  $2^4 \cdot 3 \cdot 5$ , is actually the greatest common factor of all numbers  $p^4 - 1$  so described.
  - Since p is odd, then  $p^2 + 1$  is even. Both p 1 and p + 1 are even, and since they are consecutive even integers, one is actually divisible by 4. Thus, f(p) is always divisible by  $2^4$ .
  - When divided by 3, p has remainder either 1 or 2.
    - If  $p \equiv 1$ , then 3|p-1.
    - If  $p \equiv 2$ , then 3|p+1.

Thus, f(p) is always divisible by 3.

- When divided by 5, p has remainder 1, 2, 3 or 4.
  - $\begin{aligned} & \text{If } p \equiv 1, \text{ then } 5|p-1. \\ & \text{If } p \equiv 2, \text{ then } p^2 + 1 \equiv 2^2 + 1 = 5 \equiv 0. \\ & \text{If } p \equiv 3, \text{ then } p^2 + 1 \equiv 3^2 + 1 = 10 \equiv 0. \\ & \text{If } p \equiv 4, \text{ then } 5|p+1. \end{aligned}$

Thus, f(p) is always divisible by 5.

Therefore, the greatest common factor is  $2^4 \cdot 3 \cdot 5 = 240$ .

3. Points A, M, N and B are collinear, in that order, and AM = 4, MN = 2, NB = 3. If point C is not collinear with these four points, and AC = 6, prove that CN bisects  $\angle BCM$ . Solution:

Since  $\frac{CA}{AM} = \frac{3}{2} = \frac{BA}{AC}$  and  $\angle CAM = \angle BAC$ , then  $\triangle CAM \sim \triangle BAC$ . Therefore,

$$\angle MCA = \angle CBA. \tag{1}$$

Since AC = 6 = AN, then  $\triangle CAN$  is isosceles. Therefore,

$$\angle ACN = \angle ANC. \tag{2}$$

Thus,

$$\angle BCN = \angle ANC - \angle CBA \qquad \text{since } \angle ANC \text{ is an exterior angle of } \triangle BNC \\ = \angle ACN - \angle MCA \qquad \text{using (1) and (2)} \\ = \angle MCN. \end{aligned}$$