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PART I. Give the answer in the simplest form that is reasonable. No solution is needed. Figures
are not drawn to scale. Each correct answer is worth three points.
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PART II. Show your solution to each problem. Each complete and correct solution is worth
ten points.

1. Arrange these four numbers from smallest to largest: log3 2, log5 3, log625 75,
2
3
.

Solution: The numbers, arranged from smallest to largest, are log3 2,
2
3
, log625 75, and log5 3.

• Since
(
3log3 2

)3
= 8 and

(
3

2
3

)3

= 9, then log3 2 <
2
3
.

• Since
(
625

2
3

)3

= 58 = 56 · 25 and
(
625log625 75

)3
= 753 = 56 · 27, then 2

3
< log625 75.

• If A = log625 75, then 54A = 75. On the other hand, 54 log5 3 = 81. Thus, log625 75 <
log5 3.

2. What is the greatest common factor of all integers of the form p4 − 1, where p is a prime
number greater than 5?
Solution: Let f(p) = p4 − 1 = (p − 1)(p + 1)(p2 + 1). Note that f(7) = 25 · 3 · 52 and

f(11) = 24 · 3 · 5 · 61. We now show that their greatest common factor, 24 · 3 · 5, is actually
the greatest common factor of all numbers p4 − 1 so described.

• Since p is odd, then p2 + 1 is even. Both p− 1 and p+ 1 are even, and since they are
consecutive even integers, one is actually divisible by 4. Thus, f(p) is always divisible
by 24.

• When divided by 3, p has remainder either 1 or 2.

– If p ≡ 1, then 3|p− 1.

– If p ≡ 2, then 3|p+ 1.

Thus, f(p) is always divisible by 3.



• When divided by 5, p has remainder 1, 2, 3 or 4.

– If p ≡ 1, then 5|p− 1.

– If p ≡ 2, then p2 + 1 ≡ 22 + 1 = 5 ≡ 0.

– If p ≡ 3, then p2 + 1 ≡ 32 + 1 = 10 ≡ 0.

– If p ≡ 4, then 5|p+ 1.

Thus, f(p) is always divisible by 5.

Therefore, the greatest common factor is 24 · 3 · 5 = 240.

3. Points A, M , N and B are collinear, in that order, and AM = 4, MN = 2, NB = 3.
If point C is not collinear with these four points, and AC = 6, prove that CN bisects
∠BCM .
Solution:

Since
CA

AM
=

3

2
=
BA

AC
and ∠CAM = ∠BAC, then 4CAM ∼ 4BAC. Therefore,

∠MCA = ∠CBA. (1)

Since AC = 6 = AN , then 4CAN is isosceles. Therefore,

∠ACN = ∠ANC. (2)

Thus,

∠BCN = ∠ANC − ∠CBA since ∠ANC is an exterior angle of 4BNC
= ∠ACN − ∠MCA using (1) and (2)

= ∠MCN.


