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1. Given n ∈ N, let σ(n) denote the sum of the divisors of n and ϕ(n)
denote the number of positive integers m ≤ n for which gcd(m,n) = 1.
Show that for all n ∈ N,

1

ϕ(n)
+

1

σ(n)
≥ 2

n

and determine when equality holds.

Solution. We note that equality holds for n = 1. We prove the inequality
when n > 1 and show that it is strict in this case.

By the AM-GM inequality,
1

ϕ(n)
+

1

σ(n)
≥ 2√

ϕ(n)σ(n)
. Hence, we

need only show that ϕ(n)σ(n) < n2, or equivalently,
ϕ(n)σ(n)

n2
< 1. We

note that f(n) :=
ϕ(n)σ(n)

n2
is multiplicative, i.e., f(mn) = f(m)f(n)

whenever gcd(m,n) = 1, and so it suffices to show that f(n) < 1 when
n = pk for some prime p and some integer k ≥ 1. However,

f(pk) =
ϕ(pk)σ(pk)

(pk)2
=
ϕ(pk)

pk
· σ(pk)

pk
=

(p− 1)pk−1

pk
· 1

pk

k∑
i=0

pi

=
p− 1

p
·

k∑
i=0

1

pk−i
=
p− 1

p
·

k∑
i=0

1

pi
=
p− 1

p
·

1− 1
pk+1

1− 1
p

<
p− 1

p
· 1

1− 1
p

= 1.

This completes the proof.

2. Find all positive real numbers a, b, c ≤ 1 such that

min

{√
ab+ 1

abc
,

√
bc+ 1

abc
,

√
ac+ 1

abc

}
=

√
1− a
a

+

√
1− b
b

+

√
1− c
c
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Solution. Let r, s, t ≥ 0 such that

a =
1

1 + r2
, b =

1

1 + s2
, c =

1

1 + t2
.

Also, WLOG, suppose t = min{r, s, t}. The required equation can then
be rewritten as√

(1 + t2){1 + (1 + r2)(1 + s2)} = r + s+ t.

By Cauchy-Schwarz, (r+ s+ t)2 ≤ ([r+ s]2 + 1)(1 + t2), and so we have

(1 + r2)(1 + s2) ≤ (r + s)2,

which is equivalent to (rs − 1)2 ≤ 0. Only equality is true here; hence
rs = 1 and all preceding inequalities become equations, and so t(r+s) =

1. Now, conversely, if rs = 1 and t(r + s) = 1, with t =
1

r + s
still less

than both
1

r
= s and

1

s
= r, the condition of the problem is still satisfied.

Therefore, the solutions are

a =
1

1 + r2
, b =

1

1 + 1
r2

, c =
(r + 1

r)
2

1 + (r + 1
r)

2

and permutations of these.

3. Each of the numbers in the set A = {1, 2, ..., 2017} is colored either red
or white. Prove that for n ≥ 18, there exists a coloring of the numbers in
A such that any of its n-term arithmetic sequences contains both colors.

Inspired by Problem 891 from Putnam and Beyond, T. Andreescu and R. Gelca, Springer

(2007)

Solution. It suffices to show that for n ≥ 18, the total number of colorings
(without restriction) exceeds those that make some n-term arithmetic
sequence monochromatic.

There are 22017 colorings of a set with 2017 elements. The number of col-
orings that make a fixed n-term sequence monochromatic is 2 · 22017−n =
22018−n, since the terms not in the sequence can be colored without re-
striction, while those in the sequence can be colored either all red or all
white.

We now find the number of n-term arithmetic sequences that can be
obtained from A. Such a sequence a, a+ r, . . . , a+(n−1)r is completely
determined by the first term a and common ratio r, subject to the con-
straint a + (n − 1)r ≤ 2017. For each value of a, there are

⌊
2017−a
n−1

⌋



sequences that start with a. This means that the number of arithmetic
sequences does not exceed

2017∑
a=1

2017− a
n− 1

=
2016 · 2017

2(n− 1)
.

Therefore, the total number of colorings that make at least one arith-
metic sequence monochromatic does not exceed

22018−n · 2016 · 2017

2(n− 1)
.

But for n ≥ 18,

22018−n · 2016 · 2017

2(n− 1)
≤ 22018−n · 2048 · 2048

2(n− 1)

=
22039−n

n− 1
≤ 22021

17
< 22017.

4. Circles C1 and C2 with centers at C1 and C2, respectively, intersect at
two distinct points A and B. Points P and Q are varying points on C1

and C2, respectively, such that P , Q and B are collinear and B is always
between P and Q. Let lines PC1 and QC2 intersect at R, let I be the
incenter of 4PQR, and let S be the circumcenter of 4PIQ. Show that
as P and Q vary, S traces an arc of a circle whose center is concyclic
with A, C1 and C2.

Solution. Let C be the intersection of the circle through C1, C2 and
A, and the bisector of ∠C1AC2. It suffices to show that CS = CA.
Let ∠C1AC2 = C1BC2 = 2α (fixed), ∠C1PB = ∠C1BP = 2β and
∠C2QB = ∠C2BQ = 2γ. Since

∠C1RC2 = 180◦ − ∠C1PB − ∠C2QB = 180◦ − ∠C1BP − ∠C2BQ

= ∠C1BC2 = 2α,

then R is concyclic with A, C1, C2 and C. Also, since RI bisects
∠C1RC2, then ∠C1RI = α = ∠C1RC, so C is collinear with R and I.
We note too that by considering the angles of 4PQR, α+ β + γ = 90◦.

Let the perpendicular bisectors of PI and QI meet PQ at M and N ,
respectively. Since SP = SI = SQ, then ∠SIM = ∠SPM = ∠SQN =
∠SIN and so SI bisects ∠MIN , where

∠MIN = 180◦ − (∠MIP + ∠MPI)− (∠NIQ+ ∠NQI)

= 180◦ − 2β − 2γ = 2α.



Thus, α = ∠SIM = ∠SIN . Consequently, S is collinear with R, I
and C since ∠PIS = ∠PIM + ∠SIM = β + α = ∠IPR + ∠IRP =
180◦ − ∠RIP . Furthermore, since ∠SQP = ∠SIN = α = ∠SRP , then
PRQS is cyclic.

By Ptolemy’s Theorem applied to C1AC2C,

CA · C1C2 = CC1 · AC2 + CC2 · AC1 = CC1(AC1 + AC2)

= CC1(PC1 +QC2) = CC1(RP −RC1 +RQ−RC2)

= CC1(RP +RQ)− CC1(RC1 +RC2).

We use Ptolemy’s Theorem next on C1RC2C and PRQS. Since4C1CC2 ∼
4PSQ (both are isosceles with base angle α),

CA =
SP

PQ
(RP +RQ)− CC1

C1C2
(RC1 +RC2)

=
SQ ·RP + SP ·RQ

PQ
− CC2 ·RC1 + CC1 ·RC2

C1C2

=
RS · PQ
PQ

− RC · C1C2

C1C2
= RS −RC = CS.


