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PART I. (3 points each)
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PART II. (10 points each)
1. The given system can be expressed as follows:
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We then have
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2. This problem is taken from the 2015 Iranian Geometry Olympiad.

Solution 1. Let O be the circumcenter of AABC. Since ZOBA = 90° — ZC, it suffices to
show that /FBA = 90° — ZC.
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Note that AD = BD = DH and DH = DF'. Therefore, quadrilateral AHF B is cyclic
(with circumcenter D), and so ZFBA=/FHE =90° — ZDEH. Since DF is parallel to
BC, /DEH = /C, and Z/FBA = 90° — /C. 0

Solution 2. As before, denote by O the circumcenter of AABC. Then the quadrilateral
ADOE is cyclic. Also, we know that AD = HD = DB, therefore,

/A=/DHA=180°—- ZDHFE = 180° — ZDFFE
Therefore, ADF'E is cyclic. Since ADFOEFE is cyclic, DFOFE is also cyclic, and
/C=/DFEA=/DEF = /DOF

On the other hand, Z/C' = ZDOB, so ZDOF = /ZDOB, therefore B, F', and O are
collinear. 0
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3. Consider h(z) := g(z) + = + 1. We have that, for m,n coprime and greater than 1,

h(m)h(n) = (g(m) + m +1)(g(n) + n+1)

=g(m)g(n)+ (n+1)g(m) + (m+ 1)g(n) +mn+m+n+1
= g(mn) +mn+1

= h(mn).

Repeating this, we find that more generally, if mq, ms, ..., my are pairwise coprime positive

integers all greater than 1,
k k
i=1 i=1

Hence, it suffices to consider h, and thus g, only on prime powers. Since

g(®@") > g™ ") > > g(p) > g(1) > 1,

we have g(p") > n + 1. Indeed, taking g(1) = 1, g(p") = n + 1 gives us a well-defined
function g on N. To solve for g(2016), we solve for h(2016) first, noting that 2016 = 2°-3%.7:

h(2016) = h(2°)h(3*)h(T")
= (7T+2°)(4+3)(3+ 7"
= 5070

and so ¢(2016) = 5070 — 2017 =|3053 | This is the minimum possible value of g(2016). O



