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PART II. (10 points each)

1. The given system can be expressed as follows:
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2. This problem is taken from the 2015 Iranian Geometry Olympiad .

Solution 1. Let O be the circumcenter of ∆ABC. Since ∠OBA = 90◦ − ∠C, it suffices to
show that ∠FBA = 90◦ − ∠C.

Note that AD = BD = DH and DH = DF . Therefore, quadrilateral AHFB is cyclic
(with circumcenter D), and so ∠FBA = ∠FHE = 90◦ − ∠DEH. Since DE is parallel to
BC, ∠DEH = ∠C, and ∠FBA = 90◦ − ∠C. 2

Solution 2. As before, denote by O the circumcenter of ∆ABC. Then the quadrilateral
ADOE is cyclic. Also, we know that AD = HD = DB, therefore,

∠A = ∠DHA = 180◦ − ∠DHE = 180◦ − ∠DFE

Therefore, ADFE is cyclic. Since ADFOE is cyclic, DFOE is also cyclic, and

∠C = ∠DEA = ∠DEF = ∠DOF

On the other hand, ∠C = ∠DOB, so ∠DOF = ∠DOB, therefore B, F , and O are
collinear. 2
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3. Consider h(x) := g(x) + x+ 1. We have that, for m,n coprime and greater than 1,

h(m)h(n) = (g(m) +m+ 1)(g(n) + n+ 1)

= g(m)g(n) + (n+ 1)g(m) + (m+ 1)g(n) +mn+m+ n+ 1

= g(mn) +mn+ 1

= h(mn).

Repeating this, we find that more generally, if m1,m2, . . . ,mk are pairwise coprime positive
integers all greater than 1,

h

(
k∏

i=1

mi

)
=

k∏
i=1

mi.

Hence, it suffices to consider h, and thus g, only on prime powers. Since

g(pn) > g(pn−1) > · · · > g(p) > g(1) ≥ 1,

we have g(pn) ≥ n + 1. Indeed, taking g(1) = 1, g(pn) = n + 1 gives us a well-defined
function g on N. To solve for g(2016), we solve for h(2016) first, noting that 2016 = 25·32·71:

h(2016) = h(25)h(32)h(71)

= (7 + 25)(4 + 32)(3 + 71)

= 5070

and so g(2016) = 5070− 2017 = 3053 . This is the minimum possible value of g(2016). 2
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